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• Introduction
– X-ray Thomson scattering from solid density plasmas

• Proof of principle experiments
– Backscattering experiment

• Compton scattering in dense plasmas
• Accurate temperature diagnostics

– Forward scattering experiment
• First observation of Plasmons in Warm Dense Matter
• Accurate density diagnostic
• Importance of collisions

• Compressed Matter
– Compressibility and adiabat
– Structure Factors
– Coalescing shocks

• Outlook and Conclusions

Accurate diagnostics of the physics of Warm Dense Matter
has been developed applying X-ray Thomson scattering
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Penetrating x rays are being applied to study the physical
properties of dense matter

Wilhelm Röntgen, first Novel prize
in physics, 1901

Röntgen started to take the first
radiographs of his wife’s hand

Introduction

• Time-resolved X-ray backlighting/ imaging will provide velocity
[engineering and laser science problem]

• X-ray scattering will determine the physics of dense matter: structure
and properties
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Introduction

• X-ray scattering provides temperature and density
• Need intense high-energy radiation to penetrate through the capsule

and to avoid bremsstrahlung emission
• Determine compression and adiabat of dense plasmas on NIF



Scattering
on free
electrons

ΕS

λ* ∼ λ0

Optical Laser

λD

PlasmaΕ0 v

λ = λ0 [1 ± (v/c)sin(θ/2)]

Non-collective Thomson Scattering (λ* < λD)

λ0

In
te

ns
ity

Wavelength

Te

Boltzmann distribution

From optical ‘Thomson scattering’ to x-ray
‘Compton’ Scattering

Introduction

  

! 

" = k•v



Scattering
on free
electrons

ΕS

λ* ∼ λ0

Optical Laser

λD

PlasmaΕ0 v

λ = λ0 [1 ± (v/c)sin(θ/2)]

Non-collective Thomson Scattering (λ* < λD)

λ0

In
te

ns
ity

Wavelength

Te

Boltzmann distribution

From optical ‘Thomson scattering’ to x-ray
‘Compton’ Scattering

X-ray source
Scattering
on free and
weakly
bound
electrons

Solid
density
Plasma

p = mv

ΕS

θ

p = hν /c

p = hν’/c

λ = λ0 [1 + 2(hν/mc2)sin2(θ/2) ± (v/c)sinθ/2]

X-ray ‘Compton’ scattering

In
te

ns
ity

Wavelength

Rayleigh
peak

Compton
peak

Te

λ* λ0

Energy

Fermi or
Boltzmann
distribution

Introduction

  

! 

" = k•v

  

! 

" = hk
2
2m

e

  

! 

" = k•v



Example of Doppler and Compton shift, and
dependence of shape on plasma conditions
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Example of Doppler and Compton shift, and
dependence of shape on plasma conditions
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Tightly bound e-

I.P. > (hν/mec2)hν

Weakly bound e-

I.P. < (hν/mec2)hν

O. L. Landen et al., JQSRT 71, 465 (2001):
hν2 = hν1- (hν/mec2)hν(1-cosθ) (Compton) ± 2hν(ve/c)sinθ/2 (Doppler)

hν1

I.P.

hν1

ΔEe = (hν/mec2)hν

hν1

Free electron

hν2

X-ray scattering divided between elastic (Rayleigh) and
inelastic (free plus weakly bound) components

Tightly bound electrons give Rayleigh peak
and correction to the Compton shiftElastic

Inelastic

Max. θ:         max. Compton shift
                     max. Doppler broad.

Introduction



• Introduction
– X-ray Thomson scattering from solid density plasmas

• Proof of principle experiments
– Backscattering experiment

• Compton scattering in dense plasmas
• Accurate temperature diagnostics

– Forward scattering experiment
• First observation of Plasmons in Warm Dense Matter
• Accurate density diagnostic
• Importance of collisions

• Compressed Matter
– Compressibility and adiabat
– Structure Factors
– Coalescing shocks

• Outlook and Conclusions

X-ray Thomson scattering has been shown to accurately
characterize dense compressed matter



X-ray “Thomson’ scattering in warm solid density matter
was first demonstrated on beryllium at the Omega laser

Compton downshifted and
Doppler broadened
Thomson spectrum
observed as expected

• Te broadening was predicted in
1928:  Chandrasekhar:
“scattering will not be influenced
by ranges of temperatures
available in the laboratory”
Proc R.S. A 125, 37 (1929)

 S. H. Glenzer et al., Phys. Rev. Lett. 90, 175002 (2003).

Experiment

Energy (keV)



The theoretical form factor for x-ray scattering provides
reliable plasma parameter for back scatter experiments
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From the theoretical fit to the data:
Te = 53 eV and Zfree = 3.1 corresponding to
ne = 3.8 x 1023 cm-3
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X-ray scattering application: test of ionization balance
models in dense plasmas
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Sensitivity analysis shows error bar in
electron density of ~25%
[Reducing noise will improve this value]

Density from Plasmon frequency
agrees with Z = 2.5 from backscattering
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Collisions
Plasmon spectra have been shown to be sensitive to
collisions, a fact that can be used to measure conductivity

Dashed curved is
collision-less theory:
Random Phase
Approximation
Solid curves use
Mermin theory with
collisions, νei, in Born
approximation

• Here, collisions provide a correction to the width [important to
obtain fit with proper Tevalues

• To accurately determine nei and conductivity we will implement
improvements access the collision dominated regime

– FEL experiment [A. Höll et al, HEDP 3 (2007)]
– New experiments with lower x-ray energy on Omega

Plasmon width is determined by Landau and collisional damping

Mermin
[with collisions]

RPA

 S. H. Glenzer et al., Phys. Rev. Lett. 98, 065002 (2007).
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Compressed Be at 30 Mbar has been characterized
with x-ray Thomson scattering

Compressed Matter

250 µm Be
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• A new Mn He-α backlighter at 6 keV was applied to penetrate through the dense
compressed Be

• Disadvantage: double peaks from He-α and intercombination line

X-ray scattering on compressed Be has been
performed at 90˚ and 25˚ scattering angle

90º scattering

1-D Helios simulations indicate density of
ne = 7.5 x 1023 cm-3 [ x3 compression]
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Scattering data at 4.6 ns measure compressed matter density [EF = 30 eV] and temperature
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• 90˚ scatter, non-collective regime: ne=7.5x1023 cm-3, Te=13 eV, Z=2, α~0.5
• Consistent with simulations and forward scatter results
• First direct measure of increased Fermi energy and adiabat in laser-compressed matter

Scattering data at 4.6 ns measure compressed matter density [EF = 30 eV] and temperature
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compressed matter (Be)
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• Density and temperature are determined with an error bar of <10%
• High accuracy due to additional constraints on Z by the forward scattering data

Scattering data at 4.6 ns measure compressed matter density [EF = 30 eV] and temperature

First X-ray Thomson scattering provides accurate
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• Forward scatter: ne=7.5x1023 cm-3, Te=12 eV, Z=2, α~1.6
• Forward scatter and backscatter results both provide compression of x3
• First direct measure of increased Fermi energy and adiabat in laser-compressed matter

Scattering data at 4.4 ns measure compressed matter density [EF = 30 eV]

Forward scattering data show plasmons at small
energy shifts : collective regime , 25º
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Compressed Matter

• First direct measure of increased Fermi energy, plasmons, and adiabat in
laser-compressed matter

• Accurate characterization tool of laser-compressed matter

Scattering data at 4.4 ns measure compressed matter density [EF = 30 eV]
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Preliminary comparison with HELIOS
calculations (dashed lines) shows that
temperature data are critical to test models

Temperature and density for low and
high pressure laser drive

Temperature (eV)
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3010 20

ne (1023 cm-3)

Scattering data will test hydrodynamic simulations of
compressed matter conditions

• Electron density is only a weak
function of pressure

– Expected from Be
Hugoniot data

• Temperature data
– Include error from fits

only
– Sensitivity to structure

factor calculations Sii(k)
is being investigated

– Experimental tests of
structure factors

Compressed Matter
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The intensity of the elastic scattering depends on the structure factor -
measure for different k:

Our experiments have tested the theory of structure factor
calculations

Structure Factors

Hydrogen: 
ρ=0.2 g/cc, 
T =4000˚K

Hydrogen: 
ρ=3.7 g/cc, 
T =4000˚K

metallic

molecular

gab: Pair distribution
(probability to find
other ion in distance r )
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• Data for
– Te = Ti = 12 eV
– ne= 3 x 1023 cm-3

• For θ=40˚ and θ=110˚ the elastic
scattering amplitude is
absolutely determined from the
inelastic scattering feature

• For k = 2 we have
– Non-collective scatter
– q approaches zero
– Sii approaches one

Measurements of the elastic x-ray scattering intensity for
varying scattering angles allows testing structure factors

• Density Functional Theory (DFT) has validated weak electron-ion
interactions for small k as predicted by quantum potentials

RPA

Quantum
Potential

DFT

Ion Structure factor with DFT describes
elastic scattering amplitude

Structure Factors
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The first inelastic Thomson scattering measurements on a
medium-sized laser have been successful on Titan [300 J]

Pump-probe experiments with K-alpha x-rays allowing to probe with
10 ps temporal resolution
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K-α Compton scattering on the LLNL’s Titan laser measures
temperature in shock-compressed matter with 10 ps resolution

• Compton scattering on NIF will characterize shock-compressed
matter with ultrahigh temporal resolution of 10 ps

Coalescing shocks

K-α x-rays at 4.5 keV have been applied to
scatter on dense compressed LiH

Shaped drive launches two shocks that
coalesce at 7ns with ne = 1.7 x 1023 cm-3

First measurement in coalescing shocks
shows 30% larger T values than simulations

X-ray scattering
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Compton scattering determines the
temperature of T = 2.8 eV (± 20%)
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• K-α scattering has been developed
to provide accurate characterization
of dense matter

• Compressed Matter experiment
– First successful

experiments on
compressed LiH

– Data from Titan are of
sufficient quality to test
radiation-hydrodynamic
modeling

• Density is constraint by the width of
the Compton feature

– Consistent with x 2.8
compression

First measurement in coalescing shocks
shows T = 2.8 eV (analysis assumes Te = Ti)

The intensity of the inelastic (Compton)
scattering features is temperature sensitive
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Best fit for
T = 2.8 eV

A sensitivity analysis shows that single-shot scattering data
determine temperatures with an error bar of 20%

T = 1.5 eV

T = 5 eV

α = 1

Coalescing shocks



The Thomson scattering data test hydrodynamic
modeling of the temperature evolution in shocked matter

Range of temperatures from HELIOS is due
to variations within the scattering volume

Coalescing shocks are an effective heating
mechanism
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• Temperatures in hydrodynamic
modeling is sensitive to

– Equation of state
– Radiation transport
– Heat transport

• Demonstrates technique to
characterize NIF Fusion Capsules

– A sequence of four shocks
will have to be accurately
timed before compression
and burn

Coalescing shocks



• Introduction
– X-ray Thomson scattering from solid density plasmas

• Proof of principle experiments
– Backscattering experiment

• Compton scattering in dense plasmas
• Accurate temperature diagnostics

– Forward scattering experiment
• First observation of Plasmons in Warm Dense Matter
• Accurate density diagnostic
• Importance of collisions

• Compressed Matter
– Compressibility and adiabat
– Structure Factors
– Coalescing shocks

• Outlook and Conclusions

X-ray Thomson scattering has been shown to accurately
characterize dense compressed matter



X-ray scattering measures Compton and Plasmon
features directly providing Te/TF

• Goal: Characterize shock-compressed matter
– Measure temperature and density with ultrahigh temporal resolution
– Compressibility, demonstrate ne measurement of up 1000 g/cc

Compressed fuel at high
density (up to 1000 g/cc),
efficient at low Te:  Te/TF <1

X-ray scattering spectrum
from implosion calculated by

post-processing HYDRA
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Bandwidth range
0.1 - 0.2 nm

Wavelength (nm)
30 32 340
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VUV-FEL pulse can provide > 1012 photons
for Thomson scattering experiments

e- 

Free Electron Laser beam;
Example: 32 nm, 20 fs, 50 µJ

Undulator

Undulator at VUV-FEL, DESY

Calculations for Free Electron Lasers indicate accurate
characterization of the role of collisions
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Scattering spectra show Plasmon intensity
determined by detailed balance, I ~ e-hν/kTe
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Mermin

Applications



Conclusions
• X-ray Thomson scattering has been developed for accurate measurements of

temperatures and densities in dense matter

• Back scatter
– Measures velocity distribution function:  

electron temperature Te
– Elastic (Rayleigh) scattering:        

Zfree diagnostics [ne in isochorically heated matter]

• Forward scatter
– First observation of Plasmons in warm dense matter:       

electron density ne
– Future experiments may allow accurate measurement of collisions

and conductivity

• Compressed Matter experiments
– First successful experiments on compressed Be
– Titan coalescing shocks
– Technique to characterize NIF Fusion Capsules
– Technique to characterize high energy density physics regime

[equation of state, phase transitions, metallic fluids]



The first experimental evidence for the Plasma Phase
transition have been published this year by Fortov et al.

The fact that the multiple densities exist for the same pressure would indicate a
phase transition; x-ray Thomson scattering can directly determine its existence

Applications

Experimental
data


